Ontario

Introduction

With the introduction of updated energy codes and standards, such as the Canadian National Code for Buildings (NECB), provincial jurisdictions are enacting more stringent requirements on the thermal transmittance of building envelopes. Steelway Building Systems offers roof and wall assemblies that can be used as part of the solution required to determine over-all building compliance to the energy codes. It should be noted that the Owner/ Builder/Engineer of Record that applies for the Building Permit is responsible for ensuring compliance to the energy codes. The thermal assemblies that follow only form part of this compliance. Other factors like the trade-off paths used, complete building energy modelling, HVAC equipment efficiency, building openings and other wall assemblies not supplied by Steelway, can affect the final compliance level achieved. This assessment must be done by a professional knowledgeable in the field of Building Energy Science and is not the responsibility of Steelway Building Systems.

Effective Thermal Transmittance

The tables below outline the minimum effective transmittance values (Usi) required by the SB-10 codes. To determine heating zone for various locations in Ontario, refer to Table 1.2 in the OBC 2012 for the Degree Days Below 18 C.

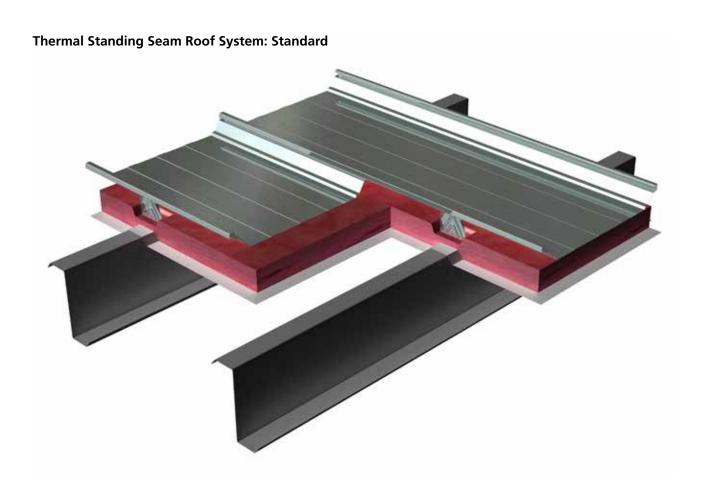
Example: Timmins, Ontario has 5940 Degree Days below 18 C. This falls under a Zone 7 (5000 to 6999) using the SB-10 Code.

SB-10 2012 Effective U values (si) (Ontario)
Overall Thermal Transmittance of Above-ground Opaque Building Assemblies

Above-	Heating Degree-Days of Building Location in Celsius Degree-Days								
ground Opaque	Zone 4	Zone 5 3000 to 3999	Zone 6 4000 to 4999	Zone 7A 5000 to 6999	Zone 8 ≥6999				
Metal	Maximum Overall Thermal Transmittance Usi in W/(m²•K)								
Building Assembly		Maximum Overall	Thermal Transmitta	ance Usi in W/(m²•	K)				
-	n/a	Maximum Overall	Thermal Transmitta 0.300	once Usi in W/(m²•	K)				

SB-10 2016 Effective U values (si) (Ontario) Overall Thermal Transmittance of Above-ground Opaque Building Assemblies

Above-	Heat	Heating Degree-Days of Building Location in Celsius Degree-Days									
ground Opaque	Zone 4	Zone 5 (A,B,C) Zone 6 (A,B) HDD18<4000 4000≤HDD18<50		Zone 7 HDD18≥5000	Zone 8						
Metal Building Assembly		Maximum Overall Thermal Transmittance Usi in W/(m²⋅K)									
Walls	n/a	0.256	0.256	0.225	n/a						
Roofs	n/a	n/a 0.189 0.158 0.148 r									


Effective Date: January 2017

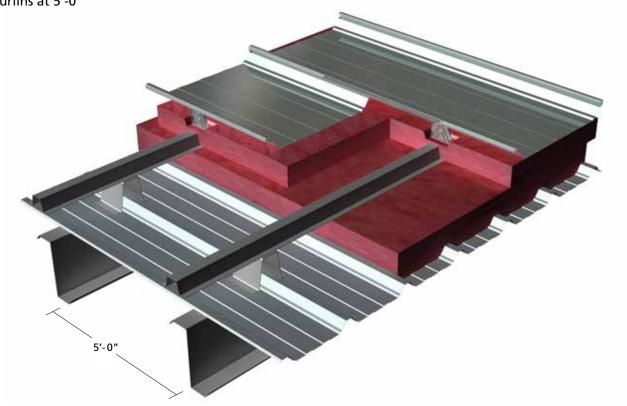
Conversions

1/U = R (R or RSI); R = 0.176 RSI; RSI = 5.68 R

Purlins at 5'-0", RTL-24 roof, faced insulation draped over purlins

	of Insulation ninal)	Overall Insulation Thickness	Effective Assembly U-Value	Effective Assembly R-Value
RSI	R	mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr∙FT²•°F/BTU)
3.59	20	152 (6)	0.357 (0.063)	2.80 (R-15.9)
5.38	30	229 (9)**	0.289 (0.051)	3.46 (R-19.6)

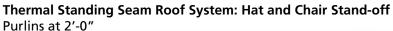
- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.

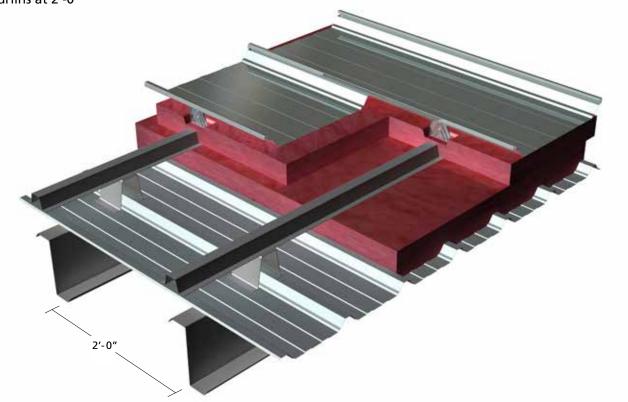

- 2. Minimum R5 (RSI 0.88) thermal block.
 3. ** RTL-24 high clip (6") required.
 4. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario

Thermal Standing Seam Roof System: Hat and Chair Stand-off Purlins at 5'-0"

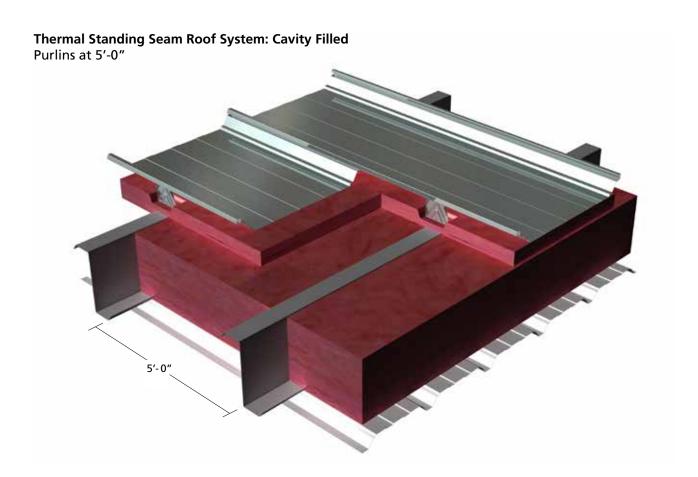
Purlins at 5'-0" with chairs spacing of 48" o/c, RTL-24 roof


	Rated Value of Insulation (nominal)		Chair		Λεερμήν II-Value /	Effective Assembly R-Value	Highest Zone	Highest Zone
RSI	R	INICKNACC	Height mm (in)	Height mm (in)	W/(m²K) (BTU/(hr●FT²●°F)	m²K/W (hr∙FT²•°F/BTU)	Meet with SB-10 2012	Meet with SB-10 2016
6.16 (4.22 + 1.94)	35 (24 + 11)	254 (10)	178 (7)	50.8 (2)	0.202 (0.036)	4.95 (R-28.1)	5	None
6.76 (4.82 + 1.94)	38 (27 + 11)	279 (11)	203 (8)	50.8 (2)	0.183 (0.032)	5.45 (R-31.0)	5	5
7.40 (5.46 + 1.94)	42 (31 + 11)	305 (12)	229 (9)	50.8 (2)	0.170 (0.030)	5.87 (R-33.4)	6	5
8.63 (6.69 + 1.94)	49 (38 + 11)	356 (14)	279 (11)	50.8 (2)	0.154 (0.027)	6.51 (R-36.9)	7	6
9.86 (7.92 + 1.94)	56 (45 + 11)	406 (16)	330 (13)	50.8 (2)	0.142 (0.025)	7.04 (R-40)	7	7


- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Minimum R5 (RSI 0.88) thermal block.

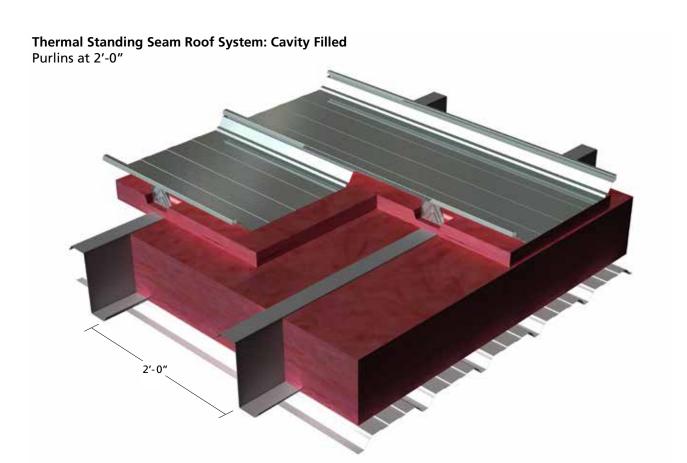
- Standard 2" hat section height. 3" insulation R11 (RSI 1.94) over top of hat sections.
 Effective U values for purlin spacing between modelled values may be extrapolated.
 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Purlins at 2'-0" with chairs spacing of 48" o/c, RTL-24 roof


Rated Value of Insulation (nominal)		Inculation	Chair	Hat	Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone	Highest Zone
RSI	R	Thickness mm (in)	Height mm (in)	Height mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr∙FT²•°F/BTU)	Meet with SB-10 2012	Meet with SB-10 2016
6.16 (4.22 + 1.94)	35 (24 + 11)	254 (10)	178 (7)	50.8 (2)	0.243 (0.043)	4.12 (R-23.4)	None	None
7.40 (5.46 + 1.94)	42 (31 + 11)	305 (12)	229 (9)	50.8 (2)	0.211 (0.037)	4.73 (R-26.9)	None	None
8.63 (6.69 + 1.94)	49 (38 + 11)	356 (14)	279 (11)	50.8 (2)	0.205 (0.036)	4.87 (R-27.7)	None	None
9.86 (7.92 + 1.94)	56 (45 + 11)	406 (16)	330 (13)	50.8 (2)	0.197 (0.035)	5.07 (R-28.8)	5	None

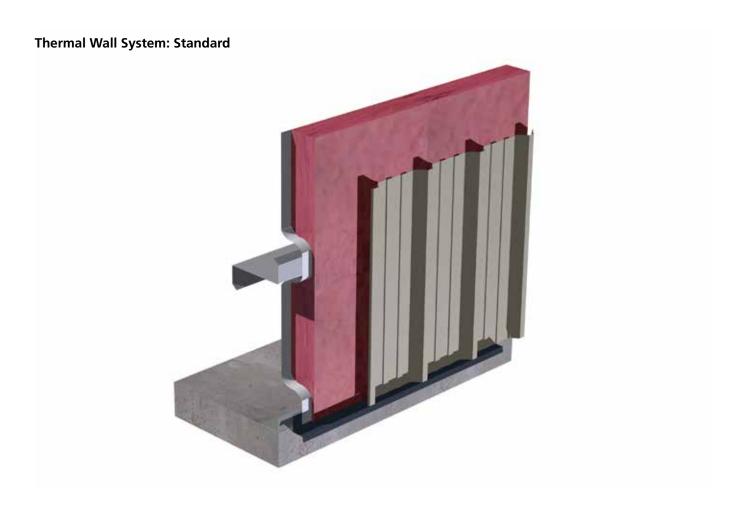
- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Minimum R5 (RSI 0.88) thermal block.
- 3. Standard 2" hat section height. 3" insulation R11 (RSI 1.94) over top of hat sections.
- 4. Effective U values for purlin spacing between modelled values may be extrapolated.
 5. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario


Purlins at 5'-0", RTL-24 roof with liner

	Rated Value of Insulation (nominal)		Overall Purlin	Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone Meet with	Highest Zone Meet with
RSI	R		Height mm (in)	Height W//m2K)	m²K/W (hr∙FT²•°F/BTU)	SB-10 2012	SB-10 2016
6.34 (4.40 + 1.94)	36 (25 + 11)	279 (11)	203 (8)	0.228 (0.040)	4.38 (R-24.9)	None	None
7.74 (5.80 + 1.94)	44 (33 + 11)	330 (13)	254 (10)	0.203 (0.036)	4.92 (R-27.9)	None	None
8.63 (6.69 + 1.94)	49 (38 + 11)	381 (15)	305 (12)	0.183 (0.032)	5.46 (R-31.0)	5	5
*9.59 (6.69 + 2.90)	*52 (38 + 16.5)	*432 (17)	305 (12)	0.158 (0.028)	6.34 (R-36.0)	7	6

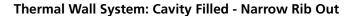
- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
 2. Minimum R5 (RSI 0.88) thermal block.
 3. Standard 3" Batt insulation R11 (RSI 1.94) over top of purlin sections.
- 4. Steel liner or Simple Saver underside of purlins.
- 5. Effective U values for purlin spacing between modelled values may be extrapolated.
- 5. Elective of Values in Spating Detweet induction values may be extrapolated.
 6. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.
 7. *RTL 6" High Clip used.

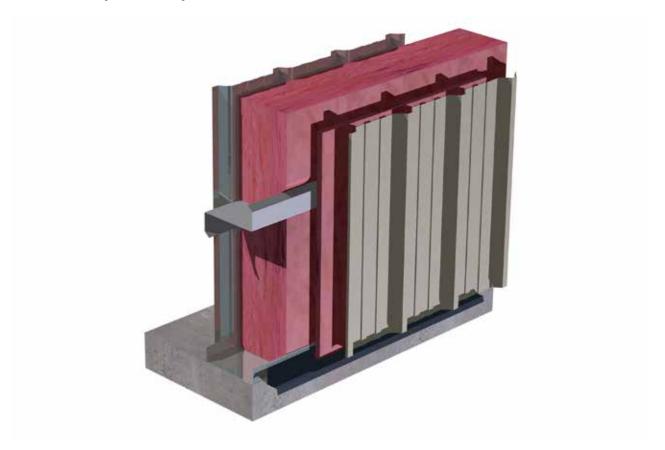

Purlins at 2'-0", RTL-24 roof with liner

	Rated Value of Insulation (nominal)		Overall Purlin	Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone Meet with	Highest Zone Meet with
RSI	R		mm (in)	Height W/(m²K) mm (in) (BTU/(hr•FT²•°F)	m²K/W (hr∙FT²•°F/BTU)	SB-10 2012	SB-10 2016
6.34 (4.40 + 1.94)	36 (25 + 11)	279 (11)	203 (8)	0.328 (0.058)	3.04 (R-17.3)	None	None
7.74 (5.80 + 1.94)	44 (33 + 11)	330 (13)	254 (10)	0.306 (0.054)	3.27 (R-18.6)	None	None
8.63 (6.69 + 1.94)	49 (38 + 11)	381 (15)	305 (12)	0.286 (0.050)	3.49 (R-19.8)	None	None
*9.59 (6.69 + 2.90)	*52 (38 + 16.5)	*432 (17)	305 (12)	0.239 (0.042)	4.18 (R-23.7)	None	None

- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
 2. Minimum R5 (RSI 0.88) thermal block.
 3. Standard 3" Batt insulation R11 (RSI 1.94) over top of purlin sections.
- 4. Steel liner or Simple Saver underside of purlins.
- 5. Effective U values for purlin spacing between modelled values may be extrapolated.
- Thertwee of Values on paining spacing between modelled values may be extraporated.
 Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.
 *RTL 6" High Clip used.

Girts at 5'-0" minimum, StormSeal panel with faced insulation draped outside wall girts

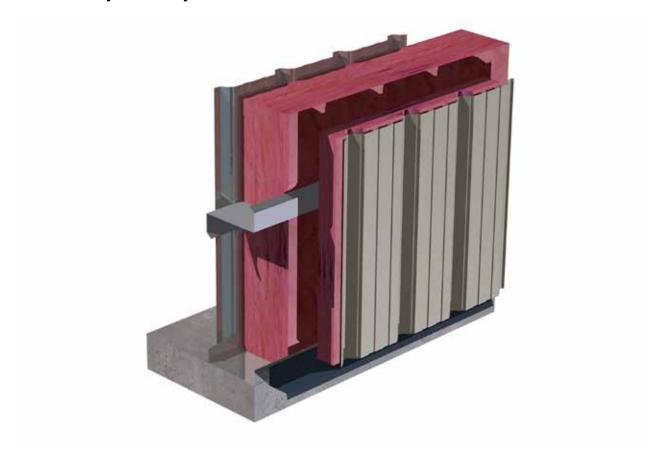

	of Insulation ninal)	Overall Insulation Thickness	Effective Assembly U-Value	Effective Assembly R-Value	
RSI	R	mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr∙FT²•°F/BTU)	
3.35	19	152 (6)	0.480 (0.085)	2.08 (R-11.8)	


- Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario

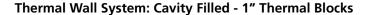
Girts at 5'-0" (minimum spacing), StormSeal exterior panels with interior liner

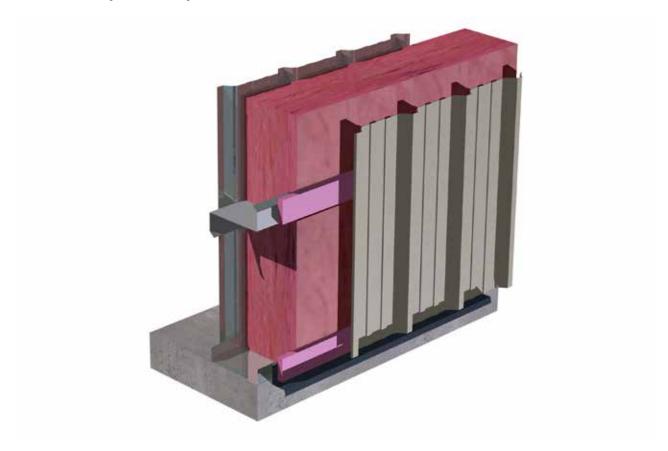
Rated Value of Insulation (nominal)		Overall Girt		Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone Meet with	Highest Zone Meet with
RSI	R	Thickness mm (in)	Depth mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr∙FT²•°F/BTU)	SB-10 2012	SB-10 2016
6.33 (4.40 + 1.93)	36 (25 + 11)	279 (11)	203 (8)	0.312 (0.055)	3.21 (R-18.2)	None	None
7.73 (5.80 + 1.93)	44 (33 + 11)	330 (13)	254 (10)	0.273 (0.048)	3.66 (R-20.8)	7	None
8.62 (6.69 + 1.93)	49 (38 + 11)	381 (15)	305 (12)	0.245 (0.043)	4.09 (R-23.2)	7	6


- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Standard 3" Batt insulation R11 (RSI 1.94) over top of girt sections.
- 3. Steel liner inside of girts.
- 4. 5 mph exterior windspeed used in model.
- 5. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario

Thermal Wall System: Cavity Filled - Wide Rib Out

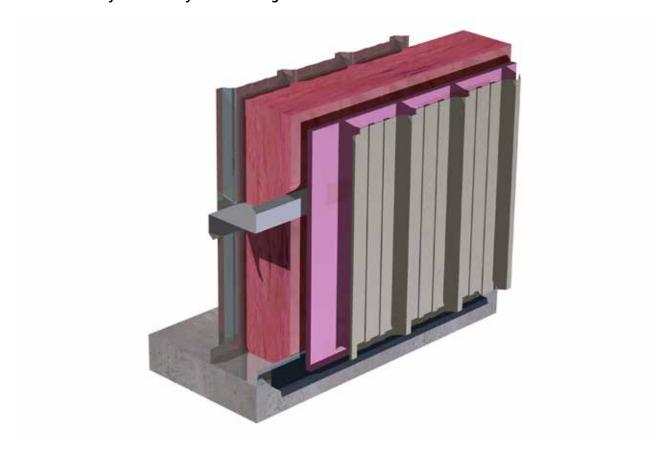

Girts at 5'-0" (minimum spacing), StormSeal exterior panels (wide rib out) with interior liner


F	Rated Value of (nomin		Overall Insulation	Girt Depth mm (in)	Effective Assembly U-Value W/(m²K) (BTU/(hr•FT²•°F)	Effective Assembly R-Value m²K/W (hr•FT²•°F/BTU)	Highest Zone Meet with	Highest Zone Meet with
	RSI	R	Thickness mm (in)				SB-10 2012	SB-10 2016
6.33	(4.40 + 1.93)	36 (25 + 11)	279 (11)	203 (8)	0.255 (0.045)	3.93 (R-22.3)	7	6

- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Standard 3" Batt insulation R11 (RSI 1.94) over top of girt sections.
- 3. Steel liner inside of girts.
- 4. 5 mph exterior windspeed used in model.
- 5. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Girts at 5'-0" (minimum spacing), StormSeal exterior panels with interior liner

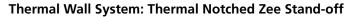
	Rated Value of Insulation (nominal)		Overall Girt	Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone Meet with	Highest Zone Meet with
RSI	R	Thickness mm (in)	Depth mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr∙FT²•°F/BTU)	SB-10 2012	SB-10 2016
5.28	30	229 (9)	203 (8)	0.244 (0.043)	4.11 (R-23.3)	7	6
5.80	35.5	279 (11)	254 (10)	0.215 (0.038)	4.65 (R-26.4)	7	7


- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Minimum R5 (RSI 0.88) thermal block.
- 3. Steel liner inside of girts.
- 5. Steel influe of piles.
 4. 5 mph exterior windspeed used in model.
 5. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario

Thermal Wall System: Cavity Filled - 1" Rigid Board

Girts at 5'-0" (minimum spacing), StormSeal exterior panels with interior liner


Rated Value of (nomin		Overall Insulation	Girt Depth mm (in)	Effective Assembly U-Value W/(m²K) (BTU/(hr•FT²•°F)	Effective Assembly R-Value m ² K/W (hr•FT ² •°F/BTU)	Highest Zone Meet with SB-10 2012	Highest Zone Meet with SB-10 2016
RSI	R	Thickness mm (in)					
6.16 (4.40 + 1.76)	R5 + 25	203 (8)	203 (8)	0.232 (0.041)	4.32 (R-24.5)	7	6

- 1. Standard Batt insulation with average R3.4 (RSI 0.60) per inch.
- 2. Minimum R5 (RSI 0.88) ridge board insulation.
- 3. Steel liner inside of girts.
- 4. 5 mph exterior windspeed used in model.
- 5. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

Ontario

Girts at 5'-0", StormSeal exterior panels with LinerSeal

Rated Value of Insulation (nominal)		Notched Thermal	Effective Assembly U-Value	Effective Assembly R-Value	Highest Zone Meet with	Highest Zone Meet with
RSI	R	Zee Depth mm (in)	W/(m²K) (BTU/(hr∙FT²•°F)	m²K/W (hr•FT²•°F/BTU)	SB-10 2012	SB-10 2016
4.44	25	152 (6.0)	0.267 (0.047)	3.75 (R-21.3)	7	None
5.55	32	191 (7.5)	0.225 (0.040)	4.44 (R-25.2)	7	7
6.29	36	216 (8.5)	0.206 (0.036)	4.85 (R-27.6)	7	7

- 1. Mineral wool insulation with average R4.2 (RSI 0.74) per inch.
- 2. 5 mph exterior windspeed used in model.
- 3. 3D Thermal modelling conducted by Morrison Hershfield using steel building components manufactured by Steelway Building Systems. Software validated as part of ASHRAE Research Project 1365-RP.

